skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boley, Kiersten M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Planet formation is expected to be severely limited in disks of low metallicity, owing to both the small solid mass reservoir and the low-opacity accelerating the disk gas dissipation. While previous studies have found a weak correlation between the occurrence rates of small planets (≲4R) and stellar metallicity, so far no studies have probed below the metallicity limit beyond which planet formation is predicted to be suppressed. Here, we constructed a large catalog of ∼110,000 metal-poor stars observed by the TESS mission with spectroscopically derived metallicities, and systematically probed planet formation within the metal-poor regime ([Fe/H] ≤−0.5) for the first time. Extrapolating known higher-metallicity trends for small, short-period planets predicts the discovery of ∼68 super-Earths around these stars (∼85,000 stars) after accounting for survey completeness; however, we detect none. As a result, we have placed the most stringent upper limit on super-Earth occurrence rates around metal-poor stars (−0.75 < [Fe/H] ≤ −0.5) to date, ≤ 1.67%, a statistically significant (p-value = 0.000685) deviation from the prediction of metallicity trends derived with Kepler and K2. We find a clear host star metallicity cliff for super-Earths that could indicate the threshold below which planets are unable to grow beyond an Earth-mass at short orbital periods. This finding provides a crucial input to planet-formation theories, and has implications for the small planet inventory of the Galaxy and the galactic epoch at which the formation of small planets started. 
    more » « less
  2. Abstract Lava worlds are a potential emerging population of Super-Earths that are on close-in orbits around their host stars, with likely partially molten mantles. To date, few studies have addressed the impact of magma on the observed properties of a planet. At ambient conditions, magma is less dense than solid rock; however, it is also more compressible with increasing pressure. Therefore, it is unclear how large-scale magma oceans affect planet observables, such as bulk density. We updateExoPlex, a thermodynamically self-consistent planet interior software, to include anhydrous, hydrous (2.2 wt% H2O), and carbonated magmas (5.2 wt% CO2). We find that Earth-like planets with magma oceans larger than ∼1.5Rand ∼3.2Mare modestly denser than an equivalent-mass solid planet. From our model, three classes of mantle structures emerge for magma ocean planets: (1) a mantle magma ocean, (2) a surface magma ocean, and (3) one consisting of a surface magma ocean, a solid rock layer, and a basal magma ocean. The class of planets in which a basal magma ocean is present may sequester dissolved volatiles on billion-year timescales, in which a 4Mmass planet can trap more than 130 times the mass of water than in Earth’s present-day oceans and 1000 times the carbon in the Earth’s surface and crust. 
    more » « less
  3. We present a reanalysis of the K2-106 transiting planetary system, with a focus on the composition of K2-106b, an ultra-short-period, super-Mercury candidate. We globally model existing photometric and radial velocity data and derive a planetary mass and radius for K2-106b of Mp = 8.53 ± 1.02 M⊕ and = - + Rp 1.71 0.057 RÅ 0.069 , which leads to a density of r = - + 9.4 p 1.5 1.6 g cm−3 , a significantly lower value than previously reported in the literature. We use planet interior models that assume a two-layer planet comprised of a liquid, pure Fe core and an iron-free, MgSiO3 mantle, and we determine that the range of the core mass fractions are consistent with the observed mass and radius. We use existing high-resolution spectra of the host star to derive the Fe/Mg/Si abundances ([Fe/ H] = −0.03 ± 0.01, [Mg/H] = 0.04 ± 0.02, [Si/H] = 0.03 ± 0.06) to infer the composition of K2-106b. We find that K2-106b has a density and core mass fraction ( - + 44 %15 12 ) consistent with that of Earth (CMF⊕ = 32%). Furthermore, its composition is consistent with what is expected, assuming that it reflects the relative refractory abundances of its host star. K2-106b is therefore unlikely to be a super-Mercury, as has been suggested in previous literature. 
    more » « less
  4. ABSTRACT TOI-1259 consists of a transiting exoplanet orbiting a main-sequence star, with a bound outer white dwarf (WDs) companion. Less than a dozen systems with this architecture are known. We conduct follow-up spectroscopy on the WD TOI-1259B using the Large Binocular Telescope to better characterize it. We observe only strong hydrogen lines, making TOI-1259B a DA WD. We see no evidence of heavy element pollution, which would have been evidence of planetary material around the WD. Such pollution is seen in $$\sim 25{-}50{{\ \rm per\ cent}}$$ of WDs, but it is unknown if this rate is higher or lower in TOI-1259-like systems that contain a known planet. Our spectroscopy permits an improved WD age measurement of $$4.05^{+1.00}_{-0.42}$$ Gyr, which matches gyrochronology of the main-sequence star. This is the first of an expanded sample of similar binaries that will allow us to calibrate these dating methods and provide a new perspective on planets in binaries. 
    more » « less